Sum and difference histograms for texture classification

The sum and difference of two random variables with same variances are decorrelated and define the principal axes of their associated joint probability function. Therefore, sum and difference histograms are introduced as an alternative to the usual co-occurrence matrices used for texture analysis. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 8(1986), 1 vom: 01. Jan., Seite 118-25
1. Verfasser: Unser, M (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 1986
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM21101589X
003 DE-627
005 20231224012721.0
007 tu
008 231224s1986 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0703.xml 
035 |a (DE-627)NLM21101589X 
035 |a (NLM)21869331 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Unser, M  |e verfasserin  |4 aut 
245 1 0 |a Sum and difference histograms for texture classification 
264 1 |c 1986 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 12.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The sum and difference of two random variables with same variances are decorrelated and define the principal axes of their associated joint probability function. Therefore, sum and difference histograms are introduced as an alternative to the usual co-occurrence matrices used for texture analysis. Two maximum likelihood texture classifiers are presented depending on the type of object used for texture characterization (sum and difference histograms or some associated global measures). Experimental results indicate that sum and difference histograms used conjointly are nearly as powerful as cooccurrence matrices for texture discrimination. The advantage of the proposed texture analysis method over the conventional spatial gray level dependence method is the decrease in computation time and memory storage 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 8(1986), 1 vom: 01. Jan., Seite 118-25  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:8  |g year:1986  |g number:1  |g day:01  |g month:01  |g pages:118-25 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 1986  |e 1  |b 01  |c 01  |h 118-25