Testing for uniformity in multidimensional data

Testing for uniformity in multidimensional data is important in exploratory pattern analysis, statistical pattern recognition, and image processing. The goal of this paper is to determine whether the data follow the uniform distribution over some compact convex set in K-dimensional space, called the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 6(1984), 1 vom: 01. Jan., Seite 73-81
1. Verfasser: Smith, S P (VerfasserIn)
Weitere Verfasser: Jain, A K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1984
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Testing for uniformity in multidimensional data is important in exploratory pattern analysis, statistical pattern recognition, and image processing. The goal of this paper is to determine whether the data follow the uniform distribution over some compact convex set in K-dimensional space, called the sampling window. We first provide a simple, computationally efficient method for generating a uniformly distributed sample over a set which approximates the convex hul of the data. We then test for uniformity by comparing this generated sample to the data by using Friedman-Rafsky's minimal spanning tree (MST) based test. Experiments with both simulated and real data indicate that this MST-based test is useful in deciding if data are uniform
Beschreibung:Date Completed 02.10.2012
Date Revised 12.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539