Evaluating Multimembership Classifiers : A Methodology and Application to the MEDAS Diagnostic System

Performance evaluation measures for multimembership classifiers are presented and applied in a retrospective study on the diagnostic performance of the MEDAS (Medical Emergency Decision Assistance System) system. Admission and discharge diagnoses for 122 patients with one or more of 26 distinct diso...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 5(1983), 2 vom: 01. Feb., Seite 225-9
1. Verfasser: Ben-Bassat, M (VerfasserIn)
Weitere Verfasser: Campell, D B, Macneil, A R, Weil, M H
Format: Aufsatz
Sprache:English
Veröffentlicht: 1983
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM211013641
003 DE-627
005 20231224012719.0
007 tu
008 231224s1983 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0703.xml 
035 |a (DE-627)NLM211013641 
035 |a (NLM)21869106 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ben-Bassat, M  |e verfasserin  |4 aut 
245 1 0 |a Evaluating Multimembership Classifiers  |b A Methodology and Application to the MEDAS Diagnostic System 
264 1 |c 1983 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 12.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Performance evaluation measures for multimembership classifiers are presented and applied in a retrospective study on the diagnostic performance of the MEDAS (Medical Emergency Decision Assistance System) system. Admission and discharge diagnoses for 122 patients with one or more of 26 distinct disorders in five major disorder categories were gathered. The average number of disorders per patient was 2 with 36 (29.5 percent) patients having 3 or more disorders simultaneously. The features (symptoms, signs, and laboratory data) available at admission were entered into a multimembership Bayesian pattern recognition algorithm which permits for diagnosis of multiple disorders. When the top five computer-ranked diagnoses were considered, all of the correct diagnoses for 86.1 percent of the patients were displayed by the fifth position. In 71.6 percent of these cases, no false diagnosis preceded any correct diagnosis. In ten cases a discharge diagnosis which was suggested by the available findings was omitted by the admitting physician. In six of these ten cases, the overlooked diagnoses appeared at the computer ranked list above all false diagnoses. Considering the urgency of diagnosis in the Emergency Department, the high uncertainty involved due to the limited availability of data, and the high frequency with which multiple disorders coexist, this limited study encourages our confidence in the MEDAS knowledge base and algorithm as a useful diagnostic support tool 
650 4 |a Journal Article 
700 1 |a Campell, D B  |e verfasserin  |4 aut 
700 1 |a Macneil, A R  |e verfasserin  |4 aut 
700 1 |a Weil, M H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 5(1983), 2 vom: 01. Feb., Seite 225-9  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:5  |g year:1983  |g number:2  |g day:01  |g month:02  |g pages:225-9 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 1983  |e 2  |b 01  |c 02  |h 225-9