|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM211012890 |
003 |
DE-627 |
005 |
20250213044540.0 |
007 |
tu |
008 |
231224s1982 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0703.xml
|
035 |
|
|
|a (DE-627)NLM211012890
|
035 |
|
|
|a (NLM)21869031
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tang, G Y
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Discrete Version of Green's Theorem
|
264 |
|
1 |
|c 1982
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 12.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We formulate a discrete version of Green's theorem such that a summation of a two-dimensional function over a discrete region can be evaluated by the use of a summation over its discrete boundary. In many cases, the discrete Green theorem can result in computational gain. Applications of the discrete Green theorem to several typical image processing problems are demonstrated. We also apply it to analyze shapes of particle aggregates of Fe2O3. Experimental results of the shape study are presented
|
650 |
|
4 |
|a Journal Article
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 4(1982), 3 vom: 01. März, Seite 242-9
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:4
|g year:1982
|g number:3
|g day:01
|g month:03
|g pages:242-9
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 4
|j 1982
|e 3
|b 01
|c 03
|h 242-9
|