|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM211012424 |
003 |
DE-627 |
005 |
20231224012718.0 |
007 |
tu |
008 |
231224s1981 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0703.xml
|
035 |
|
|
|a (DE-627)NLM211012424
|
035 |
|
|
|a (NLM)21868984
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Clark, D C
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Optimal solution of linear inequalities with applications to pattern recognition
|
264 |
|
1 |
|c 1981
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 12.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a An algorithm for the optimal solution of consistent and inconsistent linear inequalities is presented, where the optimality criterion is the maximization of the number of constraints satisfied. In the terminology of pattern recognition, the algorithm finds a linear decision function which minimizes the number of patterns misclassified. The algorithm is developed as a nonenumerative search procedure based on several new results established in this paper. Bounds on the search are also developed and the method is experimentally evaluated and shown to be computationally superior to other techniques for finding minimum-error solutions
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Gonzalez, R C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 3(1981), 6 vom: 01. Juni, Seite 643-55
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:3
|g year:1981
|g number:6
|g day:01
|g month:06
|g pages:643-55
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 3
|j 1981
|e 6
|b 01
|c 06
|h 643-55
|