Tensor learning for regression

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 2 vom: 19. Feb., Seite 816-27
1. Verfasser: Guo, Weiwei (VerfasserIn)
Weitere Verfasser: Kotsia, Irene, Patras, Ioannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM210922958
003 DE-627
005 20231224012540.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2165291  |2 doi 
028 5 2 |a pubmed24n0703.xml 
035 |a (DE-627)NLM210922958 
035 |a (NLM)21859620 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Weiwei  |e verfasserin  |4 aut 
245 1 0 |a Tensor learning for regression 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2012 
500 |a Date Revised 19.11.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2011 IEEE 
520 |a In this paper, we exploit the advantages of tensorial representations and propose several tensor learning models for regression. The model is based on the canonical/parallel-factor decomposition of tensors of multiple modes and allows the simultaneous projections of an input tensor to more than one direction along each mode. Two empirical risk functions are studied, namely, the square loss and ε -insensitive loss functions. The former leads to higher rank tensor ridge regression (TRR), and the latter leads to higher rank support tensor regression (STR), both formulated using the Frobenius norm for regularization. We also use the group-sparsity norm for regularization, favoring in that way the low rank decomposition of the tensorial weight. In that way, we achieve the automatic selection of the rank during the learning process and obtain the optimal-rank TRR and STR. Experiments conducted for the problems of head-pose, human-age, and 3-D body-pose estimations using real data from publicly available databases, verified not only the superiority of tensors over their vector counterparts but also the efficiency of the proposed algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Kotsia, Irene  |e verfasserin  |4 aut 
700 1 |a Patras, Ioannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 2 vom: 19. Feb., Seite 816-27  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:2  |g day:19  |g month:02  |g pages:816-27 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2165291  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 2  |b 19  |c 02  |h 816-27