|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM21084373X |
003 |
DE-627 |
005 |
20231224012412.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2011.03848.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0703.xml
|
035 |
|
|
|a (DE-627)NLM21084373X
|
035 |
|
|
|a (NLM)21851360
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Barthel, Matthias
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The diel imprint of leaf metabolism on the δ13 C signal of soil respiration under control and drought conditions
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 12.03.2012
|
500 |
|
|
|a Date Revised 20.05.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a ErratumIn: New Phytol. 2014 Jun;202(4):1412. - PMID 33892584
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
|
520 |
|
|
|a Recent (13) CO(2) canopy pulse chase labeling studies revealed that photosynthesis influences the carbon isotopic composition of soil respired CO(2) (δ(13) C(SR)) even on a diel timescale. However, the driving mechanisms underlying these short-term responses remain unclear, in particular under drought conditions. The gas exchange of CO(2) isotopes of canopy and soil was monitored in drought/nondrought-stressed beech (Fagus sylvatica) saplings after (13) CO(2) canopy pulse labeling. A combined canopy/soil chamber system with gas-tight separated soil and canopy compartments was coupled to a laser spectrometer measuring mixing ratios and isotopic composition of CO(2) in air at high temporal resolution. The measured δ(13) C(SR) signal was then explained and substantiated by a mechanistic carbon allocation model. Leaf metabolism had a strong imprint on diel cycles in control plants, as a result of an alternating substrate supply switching between sugar and transient starch. By contrast, diel cycles in drought-stressed plants were determined by the relative contributions of autotrophic and heterotrophic respiration throughout the day. Drought reduced the speed of the link between photosynthesis and soil respiration by a factor of c. 2.5, depending on the photosynthetic rate. Drought slows the coupling between photosynthesis and soil respiration and alters the underlying mechanism causing diel variations of δ(13) C(SR)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Carbon Isotopes
|2 NLM
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Hammerle, Albin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sturm, Patrick
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Baur, Thomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gentsch, Lydia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Knohl, Alexander
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 192(2011), 4 vom: 01. Dez., Seite 925-938
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:192
|g year:2011
|g number:4
|g day:01
|g month:12
|g pages:925-938
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2011.03848.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 192
|j 2011
|e 4
|b 01
|c 12
|h 925-938
|