|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM210821345 |
003 |
DE-627 |
005 |
20231224012348.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1523-1739.2011.01720.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0703.xml
|
035 |
|
|
|a (DE-627)NLM210821345
|
035 |
|
|
|a (NLM)21848964
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Leidner, Allison K
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Combining measures of dispersal to identify conservation strategies in fragmented landscapes
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.01.2012
|
500 |
|
|
|a Date Revised 09.02.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a ©2011 Society for Conservation Biology.
|
520 |
|
|
|a Understanding the way in which habitat fragmentation disrupts animal dispersal is key to identifying effective and efficient conservation strategies. To differentiate the potential effectiveness of 2 frequently used strategies for increasing the connectivity of populations in fragmented landscapes-corridors and stepping stones-we combined 3 complimentary methods: behavioral studies at habitat edges, mark-recapture, and genetic analyses. Each of these methods addresses different steps in the dispersal process that a single intensive study could not address. We applied the 3 methods to the case study of Atrytonopsis new species 1, a rare butterfly endemic to a partially urbanized stretch of barrier islands in North Carolina (U.S.A.). Results of behavioral analyses showed the butterfly flew into urban and forested areas, but not over open beach; mark-recapture showed that the butterfly dispersed successfully through short stretches of urban areas (<500 m); and genetic studies showed that longer stretches of forest (>5 km) were a dispersal barrier, but shorter stretches of urban areas (≤5 km) were not. Although results from all 3 methods indicated natural features in the landscape, not urbanization, were barriers to dispersal, when we combined the results we could determine where barriers might arise: forests restricted dispersal for the butterfly only when there were long stretches with no habitat. Therefore, urban areas have the potential to become a dispersal barrier if their extent increases, a finding that may have gone unnoticed if we had used a single approach. Protection of stepping stones should be sufficient to maintain connectivity for Atrytonopsis new species 1 at current levels of urbanization. Our research highlights how the use of complementary approaches for studying animal dispersal in fragmented landscapes can help identify conservation strategies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Haddad, Nick M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Conservation biology : the journal of the Society for Conservation Biology
|d 1999
|g 25(2011), 5 vom: 15. Okt., Seite 1022-31
|w (DE-627)NLM098176803
|x 1523-1739
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2011
|g number:5
|g day:15
|g month:10
|g pages:1022-31
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1523-1739.2011.01720.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2011
|e 5
|b 15
|c 10
|h 1022-31
|