Image restoration by matching gradient distributions

The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth images and typically removes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 4 vom: 13. Apr., Seite 683-94
1. Verfasser: Cho, Taeg Sang (VerfasserIn)
Weitere Verfasser: Zitnick, C Lawrence, Joshi, Neel, Kang, Sing Bing, Szeliski, Richard, Freeman, William T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM210780363
003 DE-627
005 20231224012305.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.166  |2 doi 
028 5 2 |a pubmed24n0703.xml 
035 |a (DE-627)NLM210780363 
035 |a (NLM)21844632 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cho, Taeg Sang  |e verfasserin  |4 aut 
245 1 0 |a Image restoration by matching gradient distributions 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.09.2012 
500 |a Date Revised 31.05.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth images and typically removes textures that are important for visual realism. We present an alternative deconvolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a reconstructed image should have a gradient distribution similar to a reference distribution. In natural images, a reference distribution not only varies from one image to another, but also within an image depending on texture. We estimate a reference distribution directly from an input image for each texture segment. Our algorithm is able to restore rich mid-frequency textures. A large-scale user study supports the conclusion that our algorithm improves the visual realism of reconstructed images compared to those of MAP estimators 
650 4 |a Journal Article 
700 1 |a Zitnick, C Lawrence  |e verfasserin  |4 aut 
700 1 |a Joshi, Neel  |e verfasserin  |4 aut 
700 1 |a Kang, Sing Bing  |e verfasserin  |4 aut 
700 1 |a Szeliski, Richard  |e verfasserin  |4 aut 
700 1 |a Freeman, William T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 4 vom: 13. Apr., Seite 683-94  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:4  |g day:13  |g month:04  |g pages:683-94 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 4  |b 13  |c 04  |h 683-94