An efficient camera calibration technique offering robustness and accuracy over a wide range of lens distortion

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 2 vom: 15. Feb., Seite 626-37
1. Verfasser: Rahman, Taufiqur (VerfasserIn)
Weitere Verfasser: Krouglicof, Nicholas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:© 2011 IEEE
In the field of machine vision, camera calibration refers to the experimental determination of a set of parameters that describe the image formation process for a given analytical model of the machine vision system. Researchers working with low-cost digital cameras and off-the-shelf lenses generally favor camera calibration techniques that do not rely on specialized optical equipment, modifications to the hardware, or an a priori knowledge of the vision system. Most of the commonly used calibration techniques are based on the observation of a single 3-D target or multiple planar (2-D) targets with a large number of control points. This paper presents a novel calibration technique that offers improved accuracy, robustness, and efficiency over a wide range of lens distortion. This technique operates by minimizing the error between the reconstructed image points and their experimentally determined counterparts in "distortion free" space. This facilitates the incorporation of the exact lens distortion model. In addition, expressing spatial orientation in terms of unit quaternions greatly enhances the proposed calibration solution by formulating a minimally redundant system of equations that is free of singularities. Extensive performance benchmarking consisting of both computer simulation and experiments confirmed higher accuracy in calibration regardless of the amount of lens distortion present in the optics of the camera. This paper also experimentally confirmed that a comprehensive lens distortion model including higher order radial and tangential distortion terms improves calibration accuracy
Beschreibung:Date Completed 16.05.2012
Date Revised 20.01.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2011.2164421