Mechanism of YF3 nanoparticle formation in reverse micelles

© 2011 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 19 vom: 04. Okt., Seite 11824-34
1. Verfasser: Lemyre, Jean-Luc (VerfasserIn)
Weitere Verfasser: Lamarre, Sébastien, Beaupré, Ariane, Ritcey, Anna M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM210763558
003 DE-627
005 20231224012247.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1021/la2023693  |2 doi 
028 5 2 |a pubmed24n0702.xml 
035 |a (DE-627)NLM210763558 
035 |a (NLM)21842856 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lemyre, Jean-Luc  |e verfasserin  |4 aut 
245 1 0 |a Mechanism of YF3 nanoparticle formation in reverse micelles 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.01.2012 
500 |a Date Revised 28.09.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2011 American Chemical Society 
520 |a This article reports an investigation of the mechanism of YF(3) nanoparticle formation in two variants of the reverse microemulsion precipitation method. These two variants involve the addition of F(-), either as a microemulsion or directly as an aqueous solution, to Y(3+) dispersed in nonionic reverse micelles. The two methods yield amorphous and single-crystal nanoparticles, respectively. The kinetics of reagent mixing are studied by (19)F NMR and colorimetric model reactions, and the particle growth is monitored by TEM. Mixing and nucleation are shown to occur within seconds to minutes whereas particle growth continues for 4 to 48 h, depending on the particle type. Moreover, the growth rate remains constant during most of the growth period, indicating that Ostwald ripening is the most probable growth mechanism. The single-emulsion method also produces a minority amorphous population that exhibits significantly different growth kinetics, attributed to a coagulation mechanism. Secondary growth experiments, involving the addition of precursor ions to mature particles, have been conducted to evaluate the relative importance of nucleation and the competitive growth of existing particle populations. The key differences between the two methods reside in the nucleation step. In the case of the classical method, nucleation occurs upon intermicellar collisions and under conditions of comparable concentrations of Y(3+) and F(-). This method generates more numerous stable nuclei and smaller particles. In the single-microemulsion method, nucleation occurs in the presence of excess F(-) through the interaction of Y(3+)-containing micelles with microdroplets of aqueous F(-). These conditions lead to the formation of crystalline particles and a wider size distribution of unstable nuclei 
650 4 |a Journal Article 
700 1 |a Lamarre, Sébastien  |e verfasserin  |4 aut 
700 1 |a Beaupré, Ariane  |e verfasserin  |4 aut 
700 1 |a Ritcey, Anna M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 27(2011), 19 vom: 04. Okt., Seite 11824-34  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:27  |g year:2011  |g number:19  |g day:04  |g month:10  |g pages:11824-34 
856 4 0 |u http://dx.doi.org/10.1021/la2023693  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 27  |j 2011  |e 19  |b 04  |c 10  |h 11824-34