Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application

Previously [1], we reported a coarse-grained parallel computational approach to identifying rare molecular evolutionary events often referred to as horizontal gene transfers. Very high degrees of parallelism (up to 65x speedup on 4,096 processors) were reported, yet the overall execution time for a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - 5698(2009) vom: 01. Jan., Seite 49-59
1. Verfasser: Walters, Jesse D (VerfasserIn)
Weitere Verfasser: Bair, Thomas B, Braun, Terry A, Scheetz, Todd E, Robinson, John P, Casavant, Thomas L
Format: Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM210754303
003 DE-627
005 20250714191446.0
007 tu
008 231224s2009 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n1431.xml 
035 |a (DE-627)NLM210754303 
035 |a (NLM)21841894 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Walters, Jesse D  |e verfasserin  |4 aut 
245 1 0 |a Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 29.05.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Previously [1], we reported a coarse-grained parallel computational approach to identifying rare molecular evolutionary events often referred to as horizontal gene transfers. Very high degrees of parallelism (up to 65x speedup on 4,096 processors) were reported, yet the overall execution time for a realistic problem size was still on the order of 12 days. With the availability of large numbers of compute clusters, as well as genomic sequence from more than 2,000 species containing as many as 35,000 genes each, and trillions of sequence nucleotides in all, we demonstrated the computational feasibility of a method to examine "clusters" of genes using phylogenetic tree similarity as a distance metric. A full serial solution to this problem requires years of CPU time, yet only makes modest IPC and memory demands; thus, it is an ideal candidate for a grid computing approach involving low-cost compute nodes. This paper now describes a multiple granularity parallelism solution that includes exploitation of multi-core shared memory nodes to address fine-grained aspects in the tree-clustering phase of our previous deployment of XenoCluster 1.0. In addition to benchmarking results that show up to 80% speedup efficiency on 8 CPU cores, we report on the biological accuracy and relevance of our results compared to a reported set of known xenologs in yeast 
650 4 |a Journal Article 
700 1 |a Bair, Thomas B  |e verfasserin  |4 aut 
700 1 |a Braun, Terry A  |e verfasserin  |4 aut 
700 1 |a Scheetz, Todd E  |e verfasserin  |4 aut 
700 1 |a Robinson, John P  |e verfasserin  |4 aut 
700 1 |a Casavant, Thomas L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g 5698(2009) vom: 01. Jan., Seite 49-59  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnas 
773 1 8 |g volume:5698  |g year:2009  |g day:01  |g month:01  |g pages:49-59 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5698  |j 2009  |b 01  |c 01  |h 49-59