Model-assisted adaptive recovery of compressed sensing with imaging applications

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 2 vom: 05. Feb., Seite 451-8
1. Verfasser: Wu, Xiaolin (VerfasserIn)
Weitere Verfasser: Dong, Weisheng, Zhang, Xiangjun, Shi, Guangming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM21058971X
003 DE-627
005 20231224011933.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2163520  |2 doi 
028 5 2 |a pubmed24n0702.xml 
035 |a (DE-627)NLM21058971X 
035 |a (NLM)21824848 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
245 1 0 |a Model-assisted adaptive recovery of compressed sensing with imaging applications 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2012 
500 |a Date Revised 20.01.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2011 IEEE 
520 |a In compressive sensing (CS), a challenge is to find a space in which the signal is sparse and, hence, faithfully recoverable. Since many natural signals such as images have locally varying statistics, the sparse space varies in time/spatial domain. As such, CS recovery should be conducted in locally adaptive signal-dependent spaces to counter the fact that the CS measurements are global and irrespective of signal structures. On the contrary, existing CS reconstruction methods use a fixed set of bases (e.g., wavelets, DCT, and gradient spaces) for the entirety of a signal. To rectify this problem, we propose a new framework for model-guided adaptive recovery of compressive sensing (MARX) and show how a 2-D piecewise autoregressive model can be integrated into the MARX framework to make CS recovery adaptive to spatially varying second order statistics of an image. In addition, MARX offers a mechanism of characterizing and exploiting structured sparsities of natural images, greatly restricting the CS solution space. Simulation results over a wide range of natural images show that the proposed MARX technique can improve the reconstruction quality of existing CS methods by 2-7 dB 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Dong, Weisheng  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiangjun  |e verfasserin  |4 aut 
700 1 |a Shi, Guangming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 2 vom: 05. Feb., Seite 451-8  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:2  |g day:05  |g month:02  |g pages:451-8 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2163520  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 2  |b 05  |c 02  |h 451-8