First-principles prediction on electronic and magnetic properties of hydrogenated AlN nanosheets
Copyright © 2011 Wiley Periodicals, Inc.
| Veröffentlicht in: | Journal of computational chemistry. - 1984. - 32(2011), 14 vom: 15. Nov., Seite 3122-8 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2011
|
| Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
| Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Aluminum Compounds aluminum nitride 7K47D7P3M0 |
| Zusammenfassung: | Copyright © 2011 Wiley Periodicals, Inc. Based on first-principles calculations, the geometric, electronic, and magnetic properties as well as the relative stability of the fully hydrogenated and semihydrogenated AlN nanosheets (NSs) have been investigated. The results show that different with the bare graphite-like AlN NSs terminating with polar (0001) surfaces, the hydrogenated configurations preserve the initial wurtzite structure. Depending on surface hydrogenation and the thickness of AlN NSs, three magnetic configurations, that is, semiconductor, half metal, and metal states, are all observed. Analysis of formation energies indicates that, for the configuration n = 1, the hydrogen atoms adsorb on the top of Al sites is the most stable structure, while for the other configurations (n > 2), AlN-nH structure is more favorable energetically. The results indicated that hydrogenation on different Al and N sites might be an efficient route to tune their electronic and magnetic properties to realize potential applications in the fields of electronics and spintronics |
|---|---|
| Beschreibung: | Date Completed 30.01.2012 Date Revised 15.11.2012 published: Print-Electronic Citation Status MEDLINE |
| ISSN: | 1096-987X |
| DOI: | 10.1002/jcc.21902 |