|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM210470984 |
003 |
DE-627 |
005 |
20231224011723.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la202703j
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0702.xml
|
035 |
|
|
|a (DE-627)NLM210470984
|
035 |
|
|
|a (NLM)21812484
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hirtz, Michael
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Comparative height measurements of dip-pen nanolithography-produced lipid membrane stacks with atomic force, fluorescence, and surface-enhanced ellipsometric contrast microscopy
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.01.2012
|
500 |
|
|
|a Date Revised 13.09.2011
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2011 American Chemical Society
|
520 |
|
|
|a Dip-pen nanolithography (DPN) with phospholipids has been shown to be a powerful tool for the generation of biologically active surface patterns, but screening of the obtained lithographic structures is still a bottleneck in the quality control of the prepared samples. Here we performed a comparative study with atomic force microscopy (AFM), fluorescence microscopy (FM), and surface-enhanced ellipsometric contrast (SEEC) microscopy of phospholipid membrane stacks consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with high admixing of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP Cap PE) produced by DPN. We present a structural model of membrane stacking based on the combined information gained from the three microscopic techniques. Domains of phase-separated DNP Cap PE can be detected at high DNP Cap PE admixing that are not present at medium or low admixings. While the optical methods allow for a high-throughput screening of lithographic structures (compared to AFM), it was found that, when relying on FM alone, artifacts due to phase-separation phenomena can be introduced in the case of thin membrane stacks
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Phospholipids
|2 NLM
|
700 |
1 |
|
|a Corso, Rémi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sekula-Neuner, Sylwia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fuchs, Harald
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1999
|g 27(2011), 18 vom: 20. Sept., Seite 11605-8
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2011
|g number:18
|g day:20
|g month:09
|g pages:11605-8
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la202703j
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2011
|e 18
|b 20
|c 09
|h 11605-8
|