Robust active stereo vision using Kullback-Leibler divergence

Active stereo vision is a method of 3D surface scanning involving the projecting and capturing of a series of light patterns where depth is derived from correspondences between the observed and projected patterns. In contrast, passive stereo vision reveals depth through correspondences between textu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 3 vom: 23. März, Seite 548-63
1. Verfasser: Wang, Yongchang (VerfasserIn)
Weitere Verfasser: Liu, Kai, Hao, Qi, Wang, Xianwang, Lau, Daniel L, Hassebrook, Laurence G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Active stereo vision is a method of 3D surface scanning involving the projecting and capturing of a series of light patterns where depth is derived from correspondences between the observed and projected patterns. In contrast, passive stereo vision reveals depth through correspondences between textured images from two or more cameras. By employing a projector, active stereo vision systems find correspondences between two or more cameras, without ambiguity, independent of object texture. In this paper, we present a hybrid 3D reconstruction framework that supplements projected pattern correspondence matching with texture information. The proposed scheme consists of using projected pattern data to derive initial correspondences across cameras and then using texture data to eliminate ambiguities. Pattern modulation data are then used to estimate error models from which Kullback-Leibler divergence refinement is applied to reduce misregistration errors. Using only a small number of patterns, the presented approach reduces measurement errors versus traditional structured light and phase matching methodologies while being insensitive to gamma distortion, projector flickering, and secondary reflections. Experimental results demonstrate these advantages in terms of enhanced 3D reconstruction performance in the presence of noise, deterministic distortions, and conditions of texture and depth contrast
Beschreibung:Date Completed 03.07.2012
Date Revised 02.04.2012
published: Print
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2011.162