A statistical method for 2-D facial landmarking

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 2 vom: 01. Feb., Seite 844-58
1. Verfasser: Dibeklioğlu, Hamdi (VerfasserIn)
Weitere Verfasser: Salah, Albert Ali, Gevers, Theo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM210386592
003 DE-627
005 20231224011548.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2163162  |2 doi 
028 5 2 |a pubmed24n0701.xml 
035 |a (DE-627)NLM210386592 
035 |a (NLM)21803691 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dibeklioğlu, Hamdi  |e verfasserin  |4 aut 
245 1 2 |a A statistical method for 2-D facial landmarking 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2012 
500 |a Date Revised 20.01.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2011 IEEE 
520 |a Many facial-analysis approaches rely on robust and accurate automatic facial landmarking to correctly function. In this paper, we describe a statistical method for automatic facial-landmark localization. Our landmarking relies on a parsimonious mixture model of Gabor wavelet features, computed in coarse-to-fine fashion and complemented with a shape prior. We assess the accuracy and the robustness of the proposed approach in extensive cross-database conditions conducted on four face data sets (Face Recognition Grand Challenge, Cohn-Kanade, Bosphorus, and BioID). Our method has 99.33% accuracy on the Bosphorus database and 97.62% accuracy on the BioID database on the average, which improves the state of the art. We show that the method is not significantly affected by low-resolution images, small rotations, facial expressions, and natural occlusions such as beard and mustache. We further test the goodness of the landmarks in a facial expression recognition application and report landmarking-induced improvement over baseline on two separate databases for video-based expression recognition (Cohn-Kanade and BU-4DFE) 
650 4 |a Journal Article 
700 1 |a Salah, Albert Ali  |e verfasserin  |4 aut 
700 1 |a Gevers, Theo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 2 vom: 01. Feb., Seite 844-58  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:2  |g day:01  |g month:02  |g pages:844-58 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2163162  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 2  |b 01  |c 02  |h 844-58