Electronically and ionically conductive gels of ionic liquids and charge-transfer tetrathiafulvalene-tetracyanoquinodimethane
© 2011 American Chemical Society
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 17 vom: 06. Sept., Seite 10953-61 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Gels Heterocyclic Compounds Ionic Liquids Ions Nitriles tetracyanoquinodimethane 1518-16-7 tetrathiafulvalene |
Zusammenfassung: | © 2011 American Chemical Society Electronically and ionically conductive gels were fabricated by mixing and mechanically grinding neutral tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) in ionic liquids (ILs) like 3-ethyl-1-methylimidazolium dicyanoamide (EMIDCA), 1-ethyl-3-methylimidazolium thiocyanate (EMISCN), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITf(2)N), trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide (P(14,6,6,6)Tf(2)N), and methyl-trioctylammonium bis(trifluoromethylsulfonyl)imide (MOATf(2)N). Charge-transfer TTF-TCNQ crystallites were generated during the mechanical grinding as indicated by the UV-visibile-near-infrared (UV-vis-NIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction. The charge-transfer TTF-TCNQ crystallites have a needle-like shape. They form solid networks to gelate the ILs. The gel behavior is confirmed by the dynamic mechanical measurements. It depends on both the anions and cations of the ILs. In addition, when 1-methyl-3-butylimidazolium tetrafluoroborate (BMIBF(4)) and 1-methyl-3-propylimidazolium iodide (PMII) were used, the TTF-TCNQ/IL mixtures did not behave as gels. The TTF-TCNQ/IL gels are both electronically and ionically conductive, because the solid phase formed by the charge-transfer TTF-TCNQ crystallites is electronically conductive, while the ILs are ionically conductive. The gel formation is related to needle-like charge-transfer TTF-TCNQ cyrstallites and the π-π and Coulombic interactions between TTF-TCNQ and ILs |
---|---|
Beschreibung: | Date Completed 29.12.2011 Date Revised 25.11.2016 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la202465k |