Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations

Copyright © 2011 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 32(2011), 14 vom: 15. Nov., Seite 3014-22
1. Verfasser: Olson, Mark A (VerfasserIn)
Weitere Verfasser: Chaudhury, Sidhartha, Lee, Michael S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Comparative Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Proteins
LEADER 01000naa a22002652 4500
001 NLM210277459
003 DE-627
005 20231224011351.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21883  |2 doi 
028 5 2 |a pubmed24n0701.xml 
035 |a (DE-627)NLM210277459 
035 |a (NLM)21793008 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Olson, Mark A  |e verfasserin  |4 aut 
245 1 0 |a Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.01.2012 
500 |a Date Revised 06.10.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2011 Wiley Periodicals, Inc. 
520 |a This article presents a comparative analysis of two replica-exchange simulation methods for the structure refinement of protein loop conformations, starting from low-resolution predictions. The methods are self-guided Langevin dynamics (SGLD) and molecular dynamics (MD) with a Nosé-Hoover thermostat. We investigated a small dataset of 8- and 12-residue loops, with the shorter loops placed initially from a coarse-grained lattice model and the longer loops from an enumeration assembly method (the Loopy program). The CHARMM22 + CMAP force field with a generalized Born implicit solvent model (molecular-surface parameterized GBSW2) was used to explore conformational space. We also assessed two empirical scoring methods to detect nativelike conformations from decoys: the all-atom distance-scaled ideal-gas reference state (DFIRE-AA) statistical potential and the Rosetta energy function. Among the eight-residue loop targets, SGLD out performed MD in all cases, with a median of 0.48 Å reduction in global root-mean-square deviation (RMSD) of the loop backbone coordinates from the native structure. Among the more challenging 12-residue loop targets, SGLD improved the prediction accuracy over MD by a median of 1.31 Å, representing a substantial improvement. The overall median RMSD for SGLD simulations of 12-residue loops was 0.91 Å, yielding refinement of a median 2.70 Å from initial loop placement. Results from DFIRE-AA and the Rosetta model applied to rescoring conformations failed to improve the overall detection calculated from the CHARMM force field. We illustrate the advantage of SGLD over the MD simulation model by presenting potential-energy landscapes for several loop predictions. Our results demonstrate that SGLD significantly outperforms traditional MD in the generation and populating of nativelike loop conformations and that the CHARMM force field performs comparably to other empirical force fields in identifying these conformations from the resulting ensembles 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Proteins  |2 NLM 
700 1 |a Chaudhury, Sidhartha  |e verfasserin  |4 aut 
700 1 |a Lee, Michael S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 32(2011), 14 vom: 15. Nov., Seite 3014-22  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:32  |g year:2011  |g number:14  |g day:15  |g month:11  |g pages:3014-22 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21883  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2011  |e 14  |b 15  |c 11  |h 3014-22