Understanding Blind Deconvolution Algorithms

Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deco...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 12 vom: 26. Dez., Seite 2354-67
1. Verfasser: Levin, Anat (VerfasserIn)
Weitere Verfasser: Weiss, Yair, Durand, Fredo, Freeman, William T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM210236612
003 DE-627
005 20231224011305.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.148  |2 doi 
028 5 2 |a pubmed24n0701.xml 
035 |a (DE-627)NLM210236612 
035 |a (NLM)21788664 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Levin, Anat  |e verfasserin  |4 aut 
245 1 0 |a Understanding Blind Deconvolution Algorithms 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2016 
500 |a Date Revised 27.10.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally. We explain the previously reported failure of the naive MAP approach by demonstrating that it mostly favors no-blur explanations. We show that, using reasonable image priors, a naive simulations MAP estimation of both latent image and blur kernel is guaranteed to fail even with infinitely large images sampled from the prior. On the other hand, we show that since the kernel size is often smaller than the image size, a MAP estimation of the kernel alone is well constrained and is guaranteed to succeed to recover the true blur. The plethora of recent deconvolution techniques makes an experimental evaluation on ground-truth data important. As a first step toward this experimental evaluation, we have collected blur data with ground truth and compared recent algorithms under equal settings. Additionally, our data demonstrate that the shift-invariant blur assumption made by most algorithms is often violated 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Weiss, Yair  |e verfasserin  |4 aut 
700 1 |a Durand, Fredo  |e verfasserin  |4 aut 
700 1 |a Freeman, William T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 12 vom: 26. Dez., Seite 2354-67  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:12  |g day:26  |g month:12  |g pages:2354-67 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.148  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 12  |b 26  |c 12  |h 2354-67