Lookup-table-based gradient field reconstruction

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 10 vom: 05. Okt., Seite 2827-36
1. Verfasser: Finlayson, Graham D (VerfasserIn)
Weitere Verfasser: Connah, David, Drew, Mark S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM210232188
003 DE-627
005 20231224011300.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2134106  |2 doi 
028 5 2 |a pubmed24n0701.xml 
035 |a (DE-627)NLM210232188 
035 |a (NLM)21788194 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Finlayson, Graham D  |e verfasserin  |4 aut 
245 1 0 |a Lookup-table-based gradient field reconstruction 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.01.2012 
500 |a Date Revised 19.09.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2011 IEEE 
520 |a In computer vision, there are many applications, where it is advantageous to process an image in the gradient domain and then reintegrate the gradient field: important examples include shadow removal, lightness calculation, and data fusion. A serious problem with this approach is that the reconstruction step often introduces artefacts-commonly, smoothed and smeared edges-to the recovered image. This is a result of the inherent ill-posedness of reintegrating a nonintegrable field. Artefacts can be diminished but not removed, by using complex to highly complex reintegration techniques. Here, we present a remarkably simple (and on the face of it naive) algorithm for reconstructing gradient fields. Suppose we start with a multichannel original, and from it derive a (possibly one of many) 1-D gradient field; for many applications, the derived gradient field will be nonintegrable. Here, we propose a lookup-table-based map relating the multichannel original to a reconstructed scalar output image, whose gradient best matches the target gradient field. The idea, at base, is that if we learn how to map the gradients of the multichannel original onto the desired output gradient, and then using the lookup table (LUT) constraint, we effectively derive the mapping from the multichannel input to the desired, reintegrated, image output. While this map could take a variety of forms, here we derive the best map from the multichannel gradient as a (nonlinear) function of the input to each of the target scalar gradients. In this framework, reconstruction is a simple equation-solving exercise of low dimensionality. One obvious application of our method is to the image-fusion problem, e.g., the problem of converting a color or higher-D image into grayscale. We will show, through extensive experiments and complementary theoretical arguments, that our straightforward method preserves the target contrast as well as do complex previous reintegration methods, but without artefacts, and with a substantially cheaper computational cost. Finally, we demonstrate the generality of the method by applying it to gradient field reconstruction in an additional area, the shading recovery problem 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Connah, David  |e verfasserin  |4 aut 
700 1 |a Drew, Mark S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 10 vom: 05. Okt., Seite 2827-36  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:10  |g day:05  |g month:10  |g pages:2827-36 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2134106  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 10  |b 05  |c 10  |h 2827-36