Human gait recognition using patch distribution feature and locality-constrained group sparse representation

In this paper, we propose a new patch distribution feature (PDF) (i.e., referred to as Gabor-PDF) for human gait recognition. We represent each gait energy image (GEI) as a set of local augmented Gabor features, which concatenate the Gabor features extracted from different scales and different orien...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 1 vom: 01. Jan., Seite 316-26
1. Verfasser: Xu, Dong (VerfasserIn)
Weitere Verfasser: Huang, Yi, Zeng, Zinan, Xu, Xinxing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM20965712X
003 DE-627
005 20231224010217.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2160956  |2 doi 
028 5 2 |a pubmed24n0699.xml 
035 |a (DE-627)NLM20965712X 
035 |a (NLM)21724511 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Dong  |e verfasserin  |4 aut 
245 1 0 |a Human gait recognition using patch distribution feature and locality-constrained group sparse representation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2012 
500 |a Date Revised 21.12.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a new patch distribution feature (PDF) (i.e., referred to as Gabor-PDF) for human gait recognition. We represent each gait energy image (GEI) as a set of local augmented Gabor features, which concatenate the Gabor features extracted from different scales and different orientations together with the X-Y coordinates. We learn a global Gaussian mixture model (GMM) (i.e., referred to as the universal background model) with the local augmented Gabor features from all the gallery GEIs; then, each gallery or probe GEI is further expressed as the normalized parameters of an image-specific GMM adapted from the global GMM. Observing that one video is naturally represented as a group of GEIs, we also propose a new classification method called locality-constrained group sparse representation (LGSR) to classify each probe video by minimizing the weighted l(1, 2) mixed-norm-regularized reconstruction error with respect to the gallery videos. In contrast to the standard group sparse representation method that is a special case of LGSR, the group sparsity and local smooth sparsity constraints are both enforced in LGSR. Our comprehensive experiments on the benchmark USF HumanID database demonstrate the effectiveness of the newly proposed feature Gabor-PDF and the new classification method LGSR for human gait recognition. Moreover, LGSR using the new feature Gabor-PDF achieves the best average Rank-1 and Rank-5 recognition rates on this database among all gait recognition algorithms proposed to date 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Huang, Yi  |e verfasserin  |4 aut 
700 1 |a Zeng, Zinan  |e verfasserin  |4 aut 
700 1 |a Xu, Xinxing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 1 vom: 01. Jan., Seite 316-26  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:1  |g day:01  |g month:01  |g pages:316-26 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2160956  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 1  |b 01  |c 01  |h 316-26