Efficient registration of nonrigid 3-D bodies

We present a novel method to perform an accurate registration of 3-D nonrigid bodies by using phase-shift properties of the dual-tree complex wavelet transform [Formula: see text]. Since the phases of [Formula: see text] coefficients change approximately linearly with the amount of feature displace...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 1 vom: 01. Jan., Seite 262-72
1. Verfasser: Chen, Huizhong (VerfasserIn)
Weitere Verfasser: Kingsbury, Nick
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM209657103
003 DE-627
005 20231224010217.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2160958  |2 doi 
028 5 2 |a pubmed24n0699.xml 
035 |a (DE-627)NLM209657103 
035 |a (NLM)21724509 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Huizhong  |e verfasserin  |4 aut 
245 1 0 |a Efficient registration of nonrigid 3-D bodies 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2012 
500 |a Date Revised 21.12.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We present a novel method to perform an accurate registration of 3-D nonrigid bodies by using phase-shift properties of the dual-tree complex wavelet transform [Formula: see text]. Since the phases of [Formula: see text] coefficients change approximately linearly with the amount of feature displacement in the spatial domain, motion can be estimated using the phase information from these coefficients. The motion estimation is performed iteratively: first by using coarser level complex coefficients to determine large motion components and then by employing finer level coefficients to refine the motion field. We use a parametric affine model to describe the motion, where the affine parameters are found locally by substituting into an optical flow model and by solving the resulting overdetermined set of equations. From the estimated affine parameters, the motion field between the sensed and the reference data sets can be generated, and the sensed data set then can be shifted and interpolated spatially to align with the reference data set 
650 4 |a Journal Article 
700 1 |a Kingsbury, Nick  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 1 vom: 01. Jan., Seite 262-72  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:1  |g day:01  |g month:01  |g pages:262-72 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2160958  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 1  |b 01  |c 01  |h 262-72