Optimal-Flow Minimum-Cost Correspondence Assignment in Particle Flow Tracking

A diversity of tracking problems exists in which cohorts of densely packed particles move in an organized fashion, however the stability of individual particles within the cohort is low. Moreover, the flows of cohorts can regionally overlap. Together, these conditions yield a complex tracking scenar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding : CVIU. - 1997. - 115(2011), 4 vom: 01. Apr., Seite 531-540
1. Verfasser: Matov, Alexandre (VerfasserIn)
Weitere Verfasser: Edvall, Marcus M, Yang, Ge, Danuser, Gaudenz
Format: Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Computer vision and image understanding : CVIU
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM209618434
003 DE-627
005 20250212232918.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0699.xml 
035 |a (DE-627)NLM209618434 
035 |a (NLM)21720496 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Matov, Alexandre  |e verfasserin  |4 aut 
245 1 0 |a Optimal-Flow Minimum-Cost Correspondence Assignment in Particle Flow Tracking 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A diversity of tracking problems exists in which cohorts of densely packed particles move in an organized fashion, however the stability of individual particles within the cohort is low. Moreover, the flows of cohorts can regionally overlap. Together, these conditions yield a complex tracking scenario that can not be addressed by optical flow techniques that assume piecewise coherent flows, or by multiparticle tracking techniques that suffer from the local ambiguity in particle assignment. Here, we propose a graph-based assignment of particles in three consecutive frames to recover from image sequences the instantaneous organized motion of groups of particles, i.e. flows. The algorithm makes no a priori assumptions on the fraction of particles participating in organized movement, as this number continuously alters with the evolution of the flow fields in time. Graph-based assignment methods generally maximize the number of acceptable particles assignments between consecutive frames and only then minimize the association cost. In dense and unstable particle flow fields this approach produces many false positives. The here proposed approach avoids this via solution of a multi-objective optimization problem in which the number of assignments is maximized while their total association cost is minimized at the same time. The method is validated on standard benchmark data for particle tracking. In addition, we demonstrate its application to live cell microscopy where several large molecular populations with different behaviors are tracked 
650 4 |a Journal Article 
700 1 |a Edvall, Marcus M  |e verfasserin  |4 aut 
700 1 |a Yang, Ge  |e verfasserin  |4 aut 
700 1 |a Danuser, Gaudenz  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Computer vision and image understanding : CVIU  |d 1997  |g 115(2011), 4 vom: 01. Apr., Seite 531-540  |w (DE-627)NLM098245996  |x 1077-3142  |7 nnns 
773 1 8 |g volume:115  |g year:2011  |g number:4  |g day:01  |g month:04  |g pages:531-540 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 115  |j 2011  |e 4  |b 01  |c 04  |h 531-540