Ethanol-assisted graphene oxide-based thin film formation at pentane-water interface
Graphene oxide (GO) can be viewed as an amphiphilic soft material, which form thin films at organic solvent-water interfaces. However, organic solvent evaporation provides little driving force, which results in slow GO transfer in aqueous phase, thus dawdling GO film formation processes for various...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 15 vom: 02. Aug., Seite 9174-81 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Membranes, Artificial Oxides Pentanes Water 059QF0KO0R Ethanol 3K9958V90M pentane mehr... |
Zusammenfassung: | Graphene oxide (GO) can be viewed as an amphiphilic soft material, which form thin films at organic solvent-water interfaces. However, organic solvent evaporation provides little driving force, which results in slow GO transfer in aqueous phase, thus dawdling GO film formation processes for various potential applications. We present an ethanol-assisted self-assembly method for the quick formation of GO or GO-based composite thin films with tunable composition, transmittance, and surface resistivity at pentane-water interface. The thickness of pure GO and reduced GO (rGO) films ranging from ~1 nm to more than 10 nm can be controlled by the concentration of GO in bulk solution. The transmittance of rGO films can be tuned from 72% to 97% at 550 nm while the surface resistivity changes from 8.3 to 464.6 kΩ sq(-1). Ethanol is essential for achieving quick formation of GO thin films. When ethanol is injected into GO aqueous dispersion, it serves as a nonsolvent, compromising the stability of GO and providing driving force to allow GO sheets aggregate at the water-pentane interface. On the other hand, neither the evaporation of pentane nor the mixing between ethanol and water provides sufficient driving forces to allow noteworthy amount of GO sheets to migrate from the bulk aqueous phase to the interface. This method can also be extended to prepare GO-based composites thin films with tunable composition, such as GO/single walled carbon nanotube (SWCNT) composite thin films investigated in this work. Reduced GO/SWCNT composite films show much lower surface resistivity compared to pure rGO thin films. This ethanol-assisted self-assembly method opens opportunities to design and fabricate new functional GO-based hybrid materials for various potential applications |
---|---|
Beschreibung: | Date Completed 03.11.2011 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la201230k |