Unconstrained Pose-Invariant Face Recognition Using 3D Generic Elastic Models

Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 10 vom: 13. Okt., Seite 1952-61
1. Verfasser: Prabhu, Utsav (VerfasserIn)
Weitere Verfasser: Heo, Jingu, Savvides, Marios
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation
Beschreibung:Date Completed 11.03.2016
Date Revised 01.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2011.123