Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems

For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficien...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1998. - 230(2011), 15 vom: 10. Juli, Seite 5996-6009
1. Verfasser: Zhao, Su (VerfasserIn)
Weitere Verfasser: Ovadia, Jeremy, Liu, Xinfeng, Zhang, Yong-Tao, Nie, Qing
Format: Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM20910533X
003 DE-627
005 20250212214218.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0697.xml 
035 |a (DE-627)NLM20910533X 
035 |a (NLM)21666863 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Su  |e verfasserin  |4 aut 
245 1 0 |a Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction-diffusion systems with both stiff reaction and diffusion terms, implicit integration factor (IIF) method and its higher dimensional analog compact IIF (cIIF) serve as an efficient class of time-stepping methods, and their second order version is linearly unconditionally stable. For nonlinear hyperbolic equations, weighted essentially non-oscillatory (WENO) methods are a class of schemes with a uniformly high-order of accuracy in smooth regions of the solution, which can also resolve the sharp gradient in an accurate and essentially non-oscillatory fashion. In this paper, we couple IIF/cIIF with WENO methods using the operator splitting approach to solve reaction-diffusion-advection equations. In particular, we apply the IIF/cIIF method to the stiff reaction and diffusion terms and the WENO method to the advection term in two different splitting sequences. Calculation of local truncation error and direct numerical simulations for both splitting approaches show the second order accuracy of the splitting method, and linear stability analysis and direct comparison with other approaches reveals excellent efficiency and stability properties. Applications of the splitting approach to two biological systems demonstrate that the overall method is accurate and efficient, and the splitting sequence consisting of two reaction-diffusion steps is more desirable than the one consisting of two advection steps, because CWC exhibits better accuracy and stability 
650 4 |a Journal Article 
700 1 |a Ovadia, Jeremy  |e verfasserin  |4 aut 
700 1 |a Liu, Xinfeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Yong-Tao  |e verfasserin  |4 aut 
700 1 |a Nie, Qing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1998  |g 230(2011), 15 vom: 10. Juli, Seite 5996-6009  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:230  |g year:2011  |g number:15  |g day:10  |g month:07  |g pages:5996-6009 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 230  |j 2011  |e 15  |b 10  |c 07  |h 5996-6009