Chemical functionalization of polysilicon microparticles for single-cell studies

© 2011 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 13 vom: 05. Juli, Seite 8302-8
1. Verfasser: Fernández-Rosas, E (VerfasserIn)
Weitere Verfasser: Baldi, A, Ibañez, E, Barrios, L, Novo, S, Esteve, J, Plaza, J A, Duch, M, Gómez, R, Castell, O, Nogués, C, Fernández-Sánchez, C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Ligands Polymers Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:© 2011 American Chemical Society
In this work, two types of polycrystalline silicon (polysilicon) microparticles were modified with specific ligands in order to be selectively attached to chemical residues located at the plasma membrane and thus to be applied to study individual cells in culture. Two different functionalization approaches based on adsorption and covalent attachment were assayed. A comparative study of the efficiency of the ligand immobilization and stability of the modified particle in the culture medium was carried out using the selected ligands labeled with a fluorophore. Cylindrical microparticles (nonencoded microparticles) and shape-encoded microparticles (bar codes) were used with the aim of demonstrating the nondependence of the particle size and shape on the efficiency of the immobilization protocol. Fluorescence imaging and statistical analysis of the recorded fluorescence intensity showed that the covalent attachment of the ligand to the surface of the microparticle, previously modified with an aldehyde-terminated silane, gave the best results. As a proof of concept, Vero cells in culture were labeled with the covalently modified bar codes and successfully tracked for up to 1 week without observing any alteration in the viability of the cells. Bar code numbers could be easily read by eye using a bright-field optical microscope. It is anticipated that such modified microparticles could be feasible platforms for the introduction of other analytical functions of interest in single-cell monitoring and cell sorting in automatic analysis systems
Beschreibung:Date Completed 18.10.2011
Date Revised 10.12.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la200857x