Toward a practical face recognition system : robust alignment and illumination by sparse representation

Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test imag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 2 vom: 07. Feb., Seite 372-86
1. Verfasser: Wagner, Andrew (VerfasserIn)
Weitere Verfasser: Wright, John, Ganesh, Arvind, Zhou, Zihan, Mobahi, Hossein, Ma, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM208932046
003 DE-627
005 20231224004848.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.112  |2 doi 
028 5 2 |a pubmed24n0696.xml 
035 |a (DE-627)NLM208932046 
035 |a (NLM)21646680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wagner, Andrew  |e verfasserin  |4 aut 
245 1 0 |a Toward a practical face recognition system  |b robust alignment and illumination by sparse representation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2012 
500 |a Date Revised 01.03.2012 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled and test images are only loosely controlled. We propose a conceptually simple face recognition system that achieves a high degree of robustness and stability to illumination variation, image misalignment, and partial occlusion. The system uses tools from sparse representation to align a test face image to a set of frontal training images. The region of attraction of our alignment algorithm is computed empirically for public face data sets such as Multi-PIE. We demonstrate how to capture a set of training images with enough illumination variation that they span test images taken under uncontrolled illumination. In order to evaluate how our algorithms work under practical testing conditions, we have implemented a complete face recognition system, including a projector-based training acquisition system. Our system can efficiently and effectively recognize faces under a variety of realistic conditions, using only frontal images under the proposed illuminations as training 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wright, John  |e verfasserin  |4 aut 
700 1 |a Ganesh, Arvind  |e verfasserin  |4 aut 
700 1 |a Zhou, Zihan  |e verfasserin  |4 aut 
700 1 |a Mobahi, Hossein  |e verfasserin  |4 aut 
700 1 |a Ma, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 2 vom: 07. Feb., Seite 372-86  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:2  |g day:07  |g month:02  |g pages:372-86 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.112  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 2  |b 07  |c 02  |h 372-86