Incremental state aggregation for value function estimation in reinforcement learning

In reinforcement learning, large state and action spaces make the estimation of value functions impractical, so a value function is often represented as a linear combination of basis functions whose linear coefficients constitute parameters to be estimated. However, preparing basis functions require...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 41(2011), 5 vom: 01. Okt., Seite 1407-16
1. Verfasser: Mori, Takeshi (VerfasserIn)
Weitere Verfasser: Ishii, Shin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM208799710
003 DE-627
005 20250212204153.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2011.2148710  |2 doi 
028 5 2 |a pubmed25n0696.xml 
035 |a (DE-627)NLM208799710 
035 |a (NLM)21632307 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mori, Takeshi  |e verfasserin  |4 aut 
245 1 0 |a Incremental state aggregation for value function estimation in reinforcement learning 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.01.2012 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In reinforcement learning, large state and action spaces make the estimation of value functions impractical, so a value function is often represented as a linear combination of basis functions whose linear coefficients constitute parameters to be estimated. However, preparing basis functions requires a certain amount of prior knowledge and is, in general, a difficult task. To overcome this difficulty, an adaptive basis function construction technique has been proposed by Keller recently, but it requires excessive computational cost. We propose an efficient approach to this difficulty, in which the problem of approximating the value function is decomposed into a number of subproblems, each of which can be solved with small computational cost. Computer experiments show that the CPU time needed by our method is much smaller than that by the existing method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ishii, Shin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 41(2011), 5 vom: 01. Okt., Seite 1407-16  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:41  |g year:2011  |g number:5  |g day:01  |g month:10  |g pages:1407-16 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2011.2148710  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2011  |e 5  |b 01  |c 10  |h 1407-16