Quantitative symmetry and chirality--a fast computational algorithm for large structures : proteins, macromolecules, nanotubes, and unit cells

Copyright © 2011 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 32(2011), 12 vom: 01. Sept., Seite 2526-38
1. Verfasser: Dryzun, Chaim (VerfasserIn)
Weitere Verfasser: Zait, Amir, Avnir, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Macromolecular Substances Proteins
LEADER 01000caa a22002652 4500
001 NLM208672915
003 DE-627
005 20250212201409.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21828  |2 doi 
028 5 2 |a pubmed25n0695.xml 
035 |a (DE-627)NLM208672915 
035 |a (NLM)21618558 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dryzun, Chaim  |e verfasserin  |4 aut 
245 1 0 |a Quantitative symmetry and chirality--a fast computational algorithm for large structures  |b proteins, macromolecules, nanotubes, and unit cells 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2011 
500 |a Date Revised 23.06.2011 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2011 Wiley Periodicals, Inc. 
520 |a Symmetry is one of the most fundamental properties of nature and is used to understand and investigate physical properties. Classically, symmetry is treated as a binary qualitative property, although other physical properties are quantitative. Using the continuous symmetry measure (CSM) methodology one can quantify symmetry and correlate it quantitatively to physical, chemical, and biological properties. The exact analytical procedures for calculating the CSM are computationally expensive and the calculation time grows rapidly as the structure contains more atoms. In this article, we present a new method for calculating the CSM and the related continuous chirality measure (CCM) for large systems. The new method is much faster than the full analytical procedures and it reduces the calculation time dependency from N! to N(2), where N is the number of atoms in the structure. We evaluate the cost of the applied approximations, estimate the error of the method, and show that deviations from the analytical solutions are within an error of 2%, and in many cases even less. The method is applicable at the moment for the cyclic symmetry point groups- C(i), C(s), C(n), and S(n), and therefore it can be used also for chirality measures, which are the minimal of the S(n) measures. We demonstrate the application of the method for large structures across chemistry: proteins, macromolecules, nanotubes, and large unit cells of crystals 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Macromolecular Substances  |2 NLM 
650 7 |a Proteins  |2 NLM 
700 1 |a Zait, Amir  |e verfasserin  |4 aut 
700 1 |a Avnir, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 32(2011), 12 vom: 01. Sept., Seite 2526-38  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:32  |g year:2011  |g number:12  |g day:01  |g month:09  |g pages:2526-38 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21828  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2011  |e 12  |b 01  |c 09  |h 2526-38