Molecular mechanical study of halogen bonding in drug discovery
Copyright © 2011 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 32(2011), 12 vom: 01. Sept., Seite 2564-74 |
---|---|
1. Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Antineoplastic Agents Halogens Lewis Bases Triazoles benzotriazole 86110UXM5Y Cyclin-Dependent Kinase 2 EC 2.7.11.22 |
Zusammenfassung: | Copyright © 2011 Wiley Periodicals, Inc. A halogen bond is a noncovalent bond between a halogen atom (X) and a Lewis base (Y). This type of bond is attributed to the anisotropic distribution of the charge density on the halogen atom, resulting in the formation of a positive cap (called the σ-hole) centered on the A-X axis. The current research is the first reported molecular mechanical study of halogen bonding, the positive region centered on the halogen atom was represented by an extra-point (EP) of charge. The correlation between the X-EP distance and the X…Y bond length was explored to determine the optimal position of the EP. A test set of 27 halogen-containing molecules complexed to various Lewis bases was studied using molecular mechanical potentials. The molecular mechanical minimized halogen bond lengths and binding energies were in good agreement with the corresponding quantum mechanical values. The EP inclusion on the halogen atom resulted in an improvement in the accuracy of the electrostatic-potential derived charges. The solvation free energies of halobenzene molecules relative to benzene were calculated with and without EP inclusion to assess the accuracy of the developed approach. Molecular mechanical study of halo derivatives of benzotriazole complexed to cyclin-dependent protein kinase 2 (CDK2) was performed, and MM-PB(GB)SA binding energies were calculated as a case study in finding potent halogenated inhibitors that can serve as antitumor drugs |
---|---|
Beschreibung: | Date Completed 25.11.2011 Date Revised 15.11.2012 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.21836 |