Probabilistic Models for Inference about Identity

Many face recognition algorithms use "distance-based" methods: Feature vectors are extracted from each face and distances in feature space are compared to determine matches. In this paper, we argue for a fundamentally different approach. We consider each image as having been generated from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 34(2012), 1 vom: 22. Jan., Seite 144-57
1. Verfasser: Peng Li (VerfasserIn)
Weitere Verfasser: Yun Fu, Mohammed, U, Elder, J H, Prince, S J D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM208273808
003 DE-627
005 20250212185851.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.104  |2 doi 
028 5 2 |a pubmed25n0694.xml 
035 |a (DE-627)NLM208273808 
035 |a (NLM)21576751 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng Li  |e verfasserin  |4 aut 
245 1 0 |a Probabilistic Models for Inference about Identity 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2016 
500 |a Date Revised 01.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Many face recognition algorithms use "distance-based" methods: Feature vectors are extracted from each face and distances in feature space are compared to determine matches. In this paper, we argue for a fundamentally different approach. We consider each image as having been generated from several underlying causes, some of which are due to identity (latent identity variables, or LIVs) and some of which are not. In recognition, we evaluate the probability that two faces have the same underlying identity cause. We make these ideas concrete by developing a series of novel generative models which incorporate both within-individual and between-individual variation. We consider both the linear case, where signal and noise are represented by a subspace, and the nonlinear case, where an arbitrary face manifold can be described and noise is position-dependent. We also develop a "tied" version of the algorithm that allows explicit comparison of faces across quite different viewing conditions. We demonstrate that our model produces results that are comparable to or better than the state of the art for both frontal face recognition and face recognition under varying pose 
650 4 |a Journal Article 
700 1 |a Yun Fu  |e verfasserin  |4 aut 
700 1 |a Mohammed, U  |e verfasserin  |4 aut 
700 1 |a Elder, J H  |e verfasserin  |4 aut 
700 1 |a Prince, S J D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 34(2012), 1 vom: 22. Jan., Seite 144-57  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:1  |g day:22  |g month:01  |g pages:144-57 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.104  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 1  |b 22  |c 01  |h 144-57