Specificity : A Graph-Based Estimator of Divergence

In statistical modeling, there are various techniques used to build models from training data. Quantitative comparison of modeling techniques requires a method for evaluating the quality of the fit between the model probability density function (pdf) and the training data. One graph-based measure th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 12 vom: 21. Dez., Seite 2492-505
1. Verfasser: Twining, Carole J (VerfasserIn)
Weitere Verfasser: Taylor, Christopher J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM208273719
003 DE-627
005 20231224003709.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.90  |2 doi 
028 5 2 |a pubmed24n0694.xml 
035 |a (DE-627)NLM208273719 
035 |a (NLM)21576742 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Twining, Carole J  |e verfasserin  |4 aut 
245 1 0 |a Specificity  |b A Graph-Based Estimator of Divergence 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2016 
500 |a Date Revised 27.10.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In statistical modeling, there are various techniques used to build models from training data. Quantitative comparison of modeling techniques requires a method for evaluating the quality of the fit between the model probability density function (pdf) and the training data. One graph-based measure that has been used for this purpose is the specificity. We consider the large-numbers limit of the specificity, and derive expressions which show that it can be considered as an estimator of the divergence between the unknown pdf from which the training data was drawn and the model pdf built from the training data. Experiments using artificial data enable us to show that these limiting large-number relations enable us to obtain good quantitative and qualitative predictions of the behavior of the measured specificity, even for small numbers of training examples and in some extreme cases. We demonstrate that specificity can provide a more sensitive measure of difference between various modeling methods than some previous graph-based techniques. Key points are illustrated using real data sets. We thus establish a proper theoretical basis for the previously ad hoc concept of specificity, and obtain useful insights into the application of specificity in the analysis of real data 
650 4 |a Journal Article 
700 1 |a Taylor, Christopher J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 12 vom: 21. Dez., Seite 2492-505  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:12  |g day:21  |g month:12  |g pages:2492-505 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.90  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 12  |b 21  |c 12  |h 2492-505