Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images

We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e., a critical point) of the grayscale image. Since more than one critical point may be associated...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 8 vom: 21. Aug., Seite 1646-58
1. Verfasser: Robins, Vanessa (VerfasserIn)
Weitere Verfasser: Wood, Peter John, Sheppard, Adrian P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM208273654
003 DE-627
005 20231224003709.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.95  |2 doi 
028 5 2 |a pubmed24n0694.xml 
035 |a (DE-627)NLM208273654 
035 |a (NLM)21576736 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Robins, Vanessa  |e verfasserin  |4 aut 
245 1 0 |a Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e., a critical point) of the grayscale image. Since more than one critical point may be associated with a single image voxel, we model digital images by cubical complexes. A new homotopic algorithm is used to construct a discrete Morse function on the cubical complex that agrees with the digital image and has exactly the number and type of critical cells necessary to characterize the topological changes in the level sets. We make use of discrete Morse theory and simple homotopy theory to prove correctness of this algorithm. The resulting Morse complex is considerably simpler than the cubical complex originally used to represent the image and may be used to compute persistent homology 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wood, Peter John  |e verfasserin  |4 aut 
700 1 |a Sheppard, Adrian P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 8 vom: 21. Aug., Seite 1646-58  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:8  |g day:21  |g month:08  |g pages:1646-58 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.95  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 8  |b 21  |c 08  |h 1646-58