AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase

Copyright © 2011 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 49(2011), 9 vom: 22. Sept., Seite 963-9
1. Verfasser: Francia, Doriana (VerfasserIn)
Weitere Verfasser: Chiltz, Annick, Lo Schiavo, Fiorella, Pugin, Alain, Bonfante, Paola, Cardinale, Francesca
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Complex Mixtures Plant Proteins Mitogen-Activated Protein Kinase Kinases EC 2.7.12.2
Beschreibung
Zusammenfassung:Copyright © 2011 Elsevier Masson SAS. All rights reserved.
The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity
Beschreibung:Date Completed 15.12.2011
Date Revised 13.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2011.04.008