Image deconvolution with multi-stage convex relaxation and its perceptual evaluation

© 2011 IEEE

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 12 vom: 15. Dez., Seite 3383-92
1. Verfasser: Hou, Tingbo (VerfasserIn)
Weitere Verfasser: Wang, Sen, Qin, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM208026355
003 DE-627
005 20231224003245.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2150236  |2 doi 
028 5 2 |a pubmed24n0693.xml 
035 |a (DE-627)NLM208026355 
035 |a (NLM)21550886 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hou, Tingbo  |e verfasserin  |4 aut 
245 1 0 |a Image deconvolution with multi-stage convex relaxation and its perceptual evaluation 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.03.2012 
500 |a Date Revised 22.11.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2011 IEEE 
520 |a This paper proposes a new image deconvolution method using multi-stage convex relaxation, and presents a metric for perceptual evaluation of deconvolution results. Recent work in image deconvolution addresses the deconvolution problem via minimization with non-convex regularization. Since all regularization terms in the objective function are non-convex, this problem can be well modeled and solved by multi-stage convex relaxation. This method, adopted from machine learning, iteratively refines the convex relaxation formulation using concave duality. The newly proposed deconvolution method has outstanding performance in noise removal and artifact control. A new metric, transduced contrast-to-distortion ratio (TCDR), is proposed based on a human vision system (HVS) model that simulates human responses to visual contrasts. It is sensitive to ringing and boundary artifacts, and very efficient to compute. We conduct comprehensive perceptual evaluation of image deconvolution using visual signal-to-noise ratio (VSNR) and TCDR. Experimental results of both synthetic and real data demonstrate that our method indeed improves the visual quality of deconvolution results with low distortions and artifacts 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wang, Sen  |e verfasserin  |4 aut 
700 1 |a Qin, Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 12 vom: 15. Dez., Seite 3383-92  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:12  |g day:15  |g month:12  |g pages:3383-92 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2150236  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 12  |b 15  |c 12  |h 3383-92