|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM208026339 |
003 |
DE-627 |
005 |
20250212180527.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2011.2150237
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0693.xml
|
035 |
|
|
|a (DE-627)NLM208026339
|
035 |
|
|
|a (NLM)21550885
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Jie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Image segmentation using local variation and edge-weighted centroidal Voronoi tessellations
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.04.2012
|
500 |
|
|
|a Date Revised 19.10.2011
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The classic centroidal Voronoi tessellation (CVT) model and its generalizations work quite well at extracting uniformly colored objects, but often fail to handle images with distinct color distribution or strong inhomogeneous intensity. To resolve this problem within the CVT methodology, in this paper we incorporate the information of local variation of colors/intensities and the length of boundaries into the energy functional and develop a new model called the Local Variation and Edge-Weighted Centroidal Voronoi Tessellation (LVEWCVT) for image segmentation. Its mathematical formulation and practical implementations are also discussed and given. We test the LVEWCVT method on various type of segments and also compare it with several state-of-art algorithms using extensive segmentation examples, the results demonstrate excellent performance and competence of the proposed method
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Ju, Lili
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xiaoqiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 20(2011), 11 vom: 15. Nov., Seite 3242-56
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnas
|
773 |
1 |
8 |
|g volume:20
|g year:2011
|g number:11
|g day:15
|g month:11
|g pages:3242-56
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2011.2150237
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2011
|e 11
|b 15
|c 11
|h 3242-56
|