Image segmentation using local variation and edge-weighted centroidal Voronoi tessellations

The classic centroidal Voronoi tessellation (CVT) model and its generalizations work quite well at extracting uniformly colored objects, but often fail to handle images with distinct color distribution or strong inhomogeneous intensity. To resolve this problem within the CVT methodology, in this pap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 11 vom: 15. Nov., Seite 3242-56
1. Verfasser: Wang, Jie (VerfasserIn)
Weitere Verfasser: Ju, Lili, Wang, Xiaoqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM208026339
003 DE-627
005 20250212180527.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2150237  |2 doi 
028 5 2 |a pubmed25n0693.xml 
035 |a (DE-627)NLM208026339 
035 |a (NLM)21550885 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jie  |e verfasserin  |4 aut 
245 1 0 |a Image segmentation using local variation and edge-weighted centroidal Voronoi tessellations 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.04.2012 
500 |a Date Revised 19.10.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The classic centroidal Voronoi tessellation (CVT) model and its generalizations work quite well at extracting uniformly colored objects, but often fail to handle images with distinct color distribution or strong inhomogeneous intensity. To resolve this problem within the CVT methodology, in this paper we incorporate the information of local variation of colors/intensities and the length of boundaries into the energy functional and develop a new model called the Local Variation and Edge-Weighted Centroidal Voronoi Tessellation (LVEWCVT) for image segmentation. Its mathematical formulation and practical implementations are also discussed and given. We test the LVEWCVT method on various type of segments and also compare it with several state-of-art algorithms using extensive segmentation examples, the results demonstrate excellent performance and competence of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Ju, Lili  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaoqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 11 vom: 15. Nov., Seite 3242-56  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:20  |g year:2011  |g number:11  |g day:15  |g month:11  |g pages:3242-56 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2150237  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 11  |b 15  |c 11  |h 3242-56