Bioinspired crystallization of CaCO3 coatings on electrospun cellulose acetate fiber scaffolds and corresponding CaCO3 microtube networks
This article describes the mineralization behavior of CaCO(3) crystals on electrospun cellulose acetate (CA) fibers by using poly(acrylic acid) (PAA) as a crystal growth modifier and further templating synthesis of CaCO(3) microtubes. Calcite film coatings composed of nanoneedles can form on the sur...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 27(2011), 11 vom: 07. Juni, Seite 7199-206 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Acetone 1364PS73AF acetylcellulose 3J2P07GVB6 carbopol 940 4Q93RCW27E Cellulose mehr... |
Zusammenfassung: | This article describes the mineralization behavior of CaCO(3) crystals on electrospun cellulose acetate (CA) fibers by using poly(acrylic acid) (PAA) as a crystal growth modifier and further templating synthesis of CaCO(3) microtubes. Calcite film coatings composed of nanoneedles can form on the surfaces of CA fibers while maintaining the fibrous and macroporous structures if the concentration of PAA is in a suitable range. In the presence of a suitable concentration of PAA, the acidic PAA molecules will first adsorb onto the surface of CA fibers by the interaction between the OH moieties of CA and the carboxylic groups of PAA, and then the redundant carboxylic groups of PAA can ionically bind Ca(2+) ions on the surfaces of CA fibers, resulting in the local supersaturation of Ca(2+) ions on and near the fiber surface, which can induce the nucleation of CaCO(3) on the CA fibers instead of in bulk solution. Calcite microtube networks on the macroscale can be prepared by the removal of CA fibers after the CACaCO(3) composite is treated with acetone. When the CA fiber scaffold is immersed in CaCl(2) solution with an extended incubation time, the first deposited calcite coatings can act as secondary substrate, leading to the formation of smaller calcite mesocrystal fibers. The present work proves that inorganic crystal growth can occur even at an organic interface without the need for commensurability between the lattices of the organic and inorganic counterparts |
---|---|
Beschreibung: | Date Completed 23.09.2011 Date Revised 25.11.2016 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la200738n |