Rare Cell Capture in Microfluidic Devices

This article reviews existing methods for the isolation, fractionation, or capture of rare cells in microfluidic devices. Rare cell capture devices face the challenge of maintaining the efficiency standard of traditional bulk separation methods such as flow cytometers and immunomagnetic separators w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science. - 1998. - 66(2011), 7 vom: 01. Apr., Seite 1508-1522
1. Verfasser: Pratt, Erica D (VerfasserIn)
Weitere Verfasser: Huang, Chao, Hawkins, Benjamin G, Gleghorn, Jason P, Kirby, Brian J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Chemical engineering science
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM207854114
003 DE-627
005 20231224002940.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0693.xml 
035 |a (DE-627)NLM207854114 
035 |a (NLM)21532971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pratt, Erica D  |e verfasserin  |4 aut 
245 1 0 |a Rare Cell Capture in Microfluidic Devices 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This article reviews existing methods for the isolation, fractionation, or capture of rare cells in microfluidic devices. Rare cell capture devices face the challenge of maintaining the efficiency standard of traditional bulk separation methods such as flow cytometers and immunomagnetic separators while requiring very high purity of the target cell population, which is typically already at very low starting concentrations. Two major classifications of rare cell capture approaches are covered: (1) non-electrokinetic methods (e.g., immobilization via antibody or aptamer chemistry, size-based sorting, and sheath flow and streamline sorting) are discussed for applications using blood cells, cancer cells, and other mammalian cells, and (2) electrokinetic (primarily dielectrophoretic) methods using both electrode-based and insulative geometries are presented with a view towards pathogen detection, blood fractionation, and cancer cell isolation. The included methods were evaluated based on performance criteria including cell type modeled and used, number of steps/stages, cell viability, and enrichment, efficiency, and/or purity. Major areas for improvement are increasing viability and capture efficiency/purity of directly processed biological samples, as a majority of current studies only process spiked cell lines or pre-diluted/lysed samples. Despite these current challenges, multiple advances have been made in the development of devices for rare cell capture and the subsequent elucidation of new biological phenomena; this article serves to highlight this progress as well as the electrokinetic and non-electrokinetic methods that can potentially be combined to improve performance in future studies 
650 4 |a Journal Article 
700 1 |a Huang, Chao  |e verfasserin  |4 aut 
700 1 |a Hawkins, Benjamin G  |e verfasserin  |4 aut 
700 1 |a Gleghorn, Jason P  |e verfasserin  |4 aut 
700 1 |a Kirby, Brian J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemical engineering science  |d 1998  |g 66(2011), 7 vom: 01. Apr., Seite 1508-1522  |w (DE-627)NLM098192825  |x 0009-2509  |7 nnns 
773 1 8 |g volume:66  |g year:2011  |g number:7  |g day:01  |g month:04  |g pages:1508-1522 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 66  |j 2011  |e 7  |b 01  |c 04  |h 1508-1522