|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM207747210 |
003 |
DE-627 |
005 |
20250212170500.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2011.2144609
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0692.xml
|
035 |
|
|
|a (DE-627)NLM207747210
|
035 |
|
|
|a (NLM)21521670
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Arican, Zafer
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Joint registration and super-resolution with omnidirectional images
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.04.2012
|
500 |
|
|
|a Date Revised 19.10.2011
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a This paper addresses the reconstruction of high-resolution omnidirectional images from multiple low-resolution images with inexact registration. When omnidirectional images from low-resolution vision sensors can be uniquely mapped on the 2-sphere, such a reconstruction can be described as a transform-domain super-resolution problem in a spherical imaging framework. We describe how several spherical images with arbitrary rotations in the SO(3) rotation group contribute to the reconstruction of a high-resolution image with help of the spherical Fourier transform (SFT). As low-resolution images might not be perfectly registered in practice, the impact of inaccurate alignment on the transform coefficients is analyzed. We then cast the joint registration and super-resolution problem as a total least-squares norm minimization problem in the SFT domain. A l(1)-regularized total least-squares problem is considered and solved efficiently by interior point methods. Experiments with synthetic and natural images show that the proposed methods lead to effective reconstruction of high-resolution images even when large registration errors exist in the low-resolution images. The quality of the reconstructed images also increases rapidly with the number of low-resolution images, which demonstrates the benefits of the proposed solution in super-resolution schemes. Finally, we highlight the benefit of the additional regularization constraint that clearly leads to reduced noise and improved reconstruction quality
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Frossard, Pascal
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 20(2011), 11 vom: 30. Nov., Seite 3151-62
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:20
|g year:2011
|g number:11
|g day:30
|g month:11
|g pages:3151-62
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2011.2144609
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2011
|e 11
|b 30
|c 11
|h 3151-62
|