Joint registration and super-resolution with omnidirectional images

This paper addresses the reconstruction of high-resolution omnidirectional images from multiple low-resolution images with inexact registration. When omnidirectional images from low-resolution vision sensors can be uniquely mapped on the 2-sphere, such a reconstruction can be described as a transfor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 11 vom: 30. Nov., Seite 3151-62
1. Verfasser: Arican, Zafer (VerfasserIn)
Weitere Verfasser: Frossard, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM207747210
003 DE-627
005 20250212170500.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2144609  |2 doi 
028 5 2 |a pubmed25n0692.xml 
035 |a (DE-627)NLM207747210 
035 |a (NLM)21521670 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Arican, Zafer  |e verfasserin  |4 aut 
245 1 0 |a Joint registration and super-resolution with omnidirectional images 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.04.2012 
500 |a Date Revised 19.10.2011 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the reconstruction of high-resolution omnidirectional images from multiple low-resolution images with inexact registration. When omnidirectional images from low-resolution vision sensors can be uniquely mapped on the 2-sphere, such a reconstruction can be described as a transform-domain super-resolution problem in a spherical imaging framework. We describe how several spherical images with arbitrary rotations in the SO(3) rotation group contribute to the reconstruction of a high-resolution image with help of the spherical Fourier transform (SFT). As low-resolution images might not be perfectly registered in practice, the impact of inaccurate alignment on the transform coefficients is analyzed. We then cast the joint registration and super-resolution problem as a total least-squares norm minimization problem in the SFT domain. A l(1)-regularized total least-squares problem is considered and solved efficiently by interior point methods. Experiments with synthetic and natural images show that the proposed methods lead to effective reconstruction of high-resolution images even when large registration errors exist in the low-resolution images. The quality of the reconstructed images also increases rapidly with the number of low-resolution images, which demonstrates the benefits of the proposed solution in super-resolution schemes. Finally, we highlight the benefit of the additional regularization constraint that clearly leads to reduced noise and improved reconstruction quality 
650 4 |a Journal Article 
700 1 |a Frossard, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 11 vom: 30. Nov., Seite 3151-62  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:11  |g day:30  |g month:11  |g pages:3151-62 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2144609  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 11  |b 30  |c 11  |h 3151-62