In situ small-angle X-ray scattering analysis of palladium nanoparticle growth on tobacco mosaic virus nanotemplates
We present an examination of palladium (Pd) nanoparticle growth on genetically modified tobacco mosaic virus (TMV1cys) nanotemplates via in situ small-angle X-ray scattering (SAXS). Specifically, we examine the role of the TMV1cys templates in Pd nanoparticle formation through the electroless reduct...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 27(2011), 11 vom: 07. Juni, Seite 7052-8 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2011
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. Phosphinic Acids Solutions Palladium 5TWQ1V240M sodium hypophosphite 8TU1537O43 |
Résumé: | We present an examination of palladium (Pd) nanoparticle growth on genetically modified tobacco mosaic virus (TMV1cys) nanotemplates via in situ small-angle X-ray scattering (SAXS). Specifically, we examine the role of the TMV1cys templates in Pd nanoparticle formation through the electroless reduction of Pd precursor by a chemical reducing agent as compared to identical conditions in the absence of the TMV1cys templates. We show that in the presence of TMV1cys, the viral nanotemplates provide preferential growth sites for Pd nanoparticle formation, as no measurable Pd particle growth was observed in the bulk solution. In situ SAXS confirmed that particle formation was due to the rapid adsorption of Pd atoms onto the TMV1cys templates at the very early stage of mixing, rather than adsorption of particles formed in the bulk solution. Importantly, Pd nanoparticles were significantly smaller and more uniform as compared to particle formation in the absence of TMV1cys. The Pd nanoparticle coating density was tunable based on Pd precursor concentration. Finally, we show that Pd particle growth on the TMV1cys templates was highly rapid, and complete within 33 s for most samples, in contrast to slower Pd particle growth in the absence of TMV templates. We envision that the results presented here will be valuable in furthering the fundamental understanding of the role of viral nanotemplates in particle formation, as well as of their utility in a wide range of applications |
---|---|
Description: | Date Completed 23.09.2011 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la2005453 |