Unsupervised organization of image collections : taxonomies and beyond

We introduce a nonparametric Bayesian model, called TAX, which can organize image collections into a tree-shaped taxonomy without supervision. The model is inspired by the Nested Chinese Restaurant Process (NCRP) and associates each image with a path through the taxonomy. Similar images share initia...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 11 vom: 01. Nov., Seite 2302-15
1. Verfasser: Bart, Evgeniy (VerfasserIn)
Weitere Verfasser: Welling, Max, Perona, Pietro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM207722692
003 DE-627
005 20231224002704.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.79  |2 doi 
028 5 2 |a pubmed24n0692.xml 
035 |a (DE-627)NLM207722692 
035 |a (NLM)21519098 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bart, Evgeniy  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised organization of image collections  |b taxonomies and beyond 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2012 
500 |a Date Revised 01.12.2011 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce a nonparametric Bayesian model, called TAX, which can organize image collections into a tree-shaped taxonomy without supervision. The model is inspired by the Nested Chinese Restaurant Process (NCRP) and associates each image with a path through the taxonomy. Similar images share initial segments of their paths and thus share some aspects of their representation. Each internal node in the taxonomy represents information that is common to multiple images. We explore the properties of the taxonomy through experiments on a large (~10(4)) image collection with a number of users trying to locate quickly a given image. We find that the main benefits are easier navigation through image collections and reduced description length. A natural question is whether a taxonomy is the optimal form of organization for natural images. Our experiments indicate that although taxonomies can organize images in a useful manner, more elaborate structures may be even better suited for this task 
650 4 |a Journal Article 
700 1 |a Welling, Max  |e verfasserin  |4 aut 
700 1 |a Perona, Pietro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 11 vom: 01. Nov., Seite 2302-15  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:11  |g day:01  |g month:11  |g pages:2302-15 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.79  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 11  |b 01  |c 11  |h 2302-15