A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI

Intensity inhomogeneity often occurs in real-world images, which presents a considerable challenge in image segmentation. The most widely used image segmentation algorithms are region-based and typically rely on the homogeneity of the image intensities in the regions of interest, which often fail to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 20(2011), 7 vom: 26. Juli, Seite 2007-16
1. Verfasser: Li, Chunming (VerfasserIn)
Weitere Verfasser: Huang, Rui, Ding, Zhaohua, Gatenby, J Chris, Metaxas, Dimitris N, Gore, John C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM207718393
003 DE-627
005 20250212165834.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2011.2146190  |2 doi 
028 5 2 |a pubmed25n0692.xml 
035 |a (DE-627)NLM207718393 
035 |a (NLM)21518662 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Chunming  |e verfasserin  |4 aut 
245 1 2 |a A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2011 
500 |a Date Revised 20.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Intensity inhomogeneity often occurs in real-world images, which presents a considerable challenge in image segmentation. The most widely used image segmentation algorithms are region-based and typically rely on the homogeneity of the image intensities in the regions of interest, which often fail to provide accurate segmentation results due to the intensity inhomogeneity. This paper proposes a novel region-based method for image segmentation, which is able to deal with intensity inhomogeneities in the segmentation. First, based on the model of images with intensity inhomogeneities, we derive a local intensity clustering property of the image intensities, and define a local clustering criterion function for the image intensities in a neighborhood of each point. This local clustering criterion function is then integrated with respect to the neighborhood center to give a global criterion of image segmentation. In a level set formulation, this criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, by minimizing this energy, our method is able to simultaneously segment the image and estimate the bias field, and the estimated bias field can be used for intensity inhomogeneity correction (or bias correction). Our method has been validated on synthetic images and real images of various modalities, with desirable performance in the presence of intensity inhomogeneities. Experiments show that our method is more robust to initialization, faster and more accurate than the well-known piecewise smooth model. As an application, our method has been used for segmentation and bias correction of magnetic resonance (MR) images with promising results 
650 4 |a Journal Article 
700 1 |a Huang, Rui  |e verfasserin  |4 aut 
700 1 |a Ding, Zhaohua  |e verfasserin  |4 aut 
700 1 |a Gatenby, J Chris  |e verfasserin  |4 aut 
700 1 |a Metaxas, Dimitris N  |e verfasserin  |4 aut 
700 1 |a Gore, John C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 20(2011), 7 vom: 26. Juli, Seite 2007-16  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:20  |g year:2011  |g number:7  |g day:26  |g month:07  |g pages:2007-16 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2011.2146190  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2011  |e 7  |b 26  |c 07  |h 2007-16