Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica

MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. Populus euphratica is a typical abiotic stress-resistant woody species. This study presents an efficient method for genome-wide discovery of new drought stress responsive miRNAs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 62(2011), 11 vom: 15. Juli, Seite 3765-79
1. Verfasser: Li, Bosheng (VerfasserIn)
Weitere Verfasser: Qin, Yurong, Duan, Hui, Yin, Weilun, Xia, Xinli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't MicroRNAs RNA, Plant
Beschreibung
Zusammenfassung:MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. Populus euphratica is a typical abiotic stress-resistant woody species. This study presents an efficient method for genome-wide discovery of new drought stress responsive miRNAs in P. euphratica. High-throughput sequencing of P. euphratica leaves found 197 conserved miRNAs between P. euphratica and Populus trichocarpa. Meanwhile, 58 new miRNAs belonging to 38 families were identified, an increase in the number of P. euphratica miRNAs. Twenty-six new and 21 conserved miRNA targets were verified by degradome sequencing, and target annotation showed that these targets were involved in multiple biological processes, including transcriptional regulation and response to stimulus. Furthermore, comparison of high-throughput sequencing with miRNA microarray profiling data indicated that 104 miRNA sequences were up-regulated, whereas 27 were down-regulated under drought stress. This preliminary characterization provides a framework for future analysis of miRNA genes and their roles in key poplar traits such as stress resistance, and could be useful for plant breeding and environmental protection
Beschreibung:Date Completed 07.11.2011
Date Revised 08.04.2022
published: Print-Electronic
GEO: GSE25747
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/err051