Disarrangement of actin filaments and Ca²⁺ gradient by CdCl₂ alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking

Copyright © 2011 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 168(2011), 11 vom: 15. Juli, Seite 1157-67
1. Verfasser: Fan, Jun-Ling (VerfasserIn)
Weitere Verfasser: Wei, Xue-Zhi, Wan, Li-Chuan, Zhang, Ling-Yun, Zhao, Xue-Qin, Liu, Wei-Zhong, Hao, Huai-Qin, Zhang, Hai-Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Calcium Channels Pectins 89NA02M4RX Cadmium Chloride J6K4F9V3BA Calcium SY7Q814VUP
Beschreibung
Zusammenfassung:Copyright © 2011 Elsevier GmbH. All rights reserved.
Cadmium (Cd), one of the most toxic heavy metals, inhibits many cellular and physiological processes in plants. Here, the involvement of cytoplasmic Ca²⁺ gradient and actin filaments (AFs) in vesicular trafficking, cell wall deposition and tip growth was investigated during root (hair) development of Arabidopsis thaliana in response to CdCl₂ treatment. Seed germination and root elongation were prevented in a dose- and time-dependent manner by CdCl₂ treatment. Fluorescence labelling and non-invasive detection showed that CdCl₂ inhibited extracellular Ca²⁺ influx, promoted intracellular Ca²⁺ efflux, and disturbed the cytoplasmic tip-focused Ca²⁺ gradient. In vivo labelling revealed that CdCl₂ modified actin organization, which subsequently contributed to vesicle trafficking. Transmission electron microscopy revealed that CdCl₂ induced cytoplasmic vacuolization and was detrimental to organelles such as mitochondria and endoplasmic reticulum (ER). Finally, immunofluorescent labelling and Fourier transform infrared (FTIR) analysis indicated that configuration/distribution of cell wall components such as pectins and cellulose was significantly altered in response to CdCl₂. Our results indicate that CdCl₂ induces disruption of Ca²⁺ gradient and AFs affects the distribution of cell wall components in root hairs by disturbing vesicular trafficking in A. thaliana
Beschreibung:Date Completed 15.09.2011
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2011.01.031