Bayesian Parametric Accelerated Failure Time Spatial Model and its Application to Prostate Cancer

Prostate cancer is the most common cancer diagnosed in American men and the second leading cause of death from malignancies. There are large geographical variation and racial disparities existing in the survival rate of prostate cancer. Much work on the spatial survival model is based on the proport...

Description complète

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 38(2011), 2 vom: 01. März, Seite 591-603
Auteur principal: Zhang, Jiajia (Auteur)
Autres auteurs: Lawson, Andrew B
Format: Article
Langue:English
Publié: 2011
Accès à la collection:Journal of applied statistics
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM207308519
003 DE-627
005 20250212153136.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0691.xml 
035 |a (DE-627)NLM207308519 
035 |a (NLM)21475617 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jiajia  |e verfasserin  |4 aut 
245 1 0 |a Bayesian Parametric Accelerated Failure Time Spatial Model and its Application to Prostate Cancer 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Prostate cancer is the most common cancer diagnosed in American men and the second leading cause of death from malignancies. There are large geographical variation and racial disparities existing in the survival rate of prostate cancer. Much work on the spatial survival model is based on the proportional hazards model, but few focused on the accelerated failure time model. In this paper, we investigate the prostate cancer data of Louisiana from the SEER program and the violation of the proportional hazards assumption suggests the spatial survival model based on the accelerated failure time model is more appropriate for this data set. To account for the possible extra-variation, we consider spatially-referenced independent or dependent spatial structures. The deviance information criterion (DIC) is used to select a best fitting model within the Bayesian frame work. The results from our study indicate that age, race, stage and geographical distribution are significant in evaluating prostate cancer survival 
650 4 |a Journal Article 
700 1 |a Lawson, Andrew B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 38(2011), 2 vom: 01. März, Seite 591-603  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:38  |g year:2011  |g number:2  |g day:01  |g month:03  |g pages:591-603 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2011  |e 2  |b 01  |c 03  |h 591-603