Causal Inference on Discrete Data Using Additive Noise Models

Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. The case of two random variables is particularly challenging since no (conditional) independences can be exploited. Recent methods that are based on additive...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 33(2011), 12 vom: 04. Dez., Seite 2436-50
1. Verfasser: Peters, Jonas (VerfasserIn)
Weitere Verfasser: Janzing, Dominik, Schölkopf, Bernhard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM207206589
003 DE-627
005 20231224001601.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.71  |2 doi 
028 5 2 |a pubmed24n0691.xml 
035 |a (DE-627)NLM207206589 
035 |a (NLM)21464504 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peters, Jonas  |e verfasserin  |4 aut 
245 1 0 |a Causal Inference on Discrete Data Using Additive Noise Models 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2016 
500 |a Date Revised 27.10.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. The case of two random variables is particularly challenging since no (conditional) independences can be exploited. Recent methods that are based on additive noise models suggest the following principle: Whenever the joint distribution P((X,Y)) admits such a model in one direction, e.g., Y = f(X)+N, N ⊥ X, but does not admit the reversed model X=g(Y)+Ñ, Ñ ⊥ Y, one infers the former direction to be causal (i.e., X → Y). Up to now, these approaches only dealt with continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work, we extend the notion of additive noise models to these cases. We prove that it almost never occurs that additive noise models can be fit in both directions. We further propose an efficient algorithm that is able to perform this way of causal inference on finite samples of discrete variables. We show that the algorithm works on both synthetic and real data sets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Janzing, Dominik  |e verfasserin  |4 aut 
700 1 |a Schölkopf, Bernhard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 33(2011), 12 vom: 04. Dez., Seite 2436-50  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:12  |g day:04  |g month:12  |g pages:2436-50 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.71  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 12  |b 04  |c 12  |h 2436-50