Hough forests for object detection, tracking, and action recognition

Abstract—The paper introduces Hough forests, which are random forests adapted to perform a generalized Hough transform in an efficient way. Compared to previous Hough-based systems such as implicit shape models, Hough forests improve the performance of the generalized Hough transform for object dete...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 11 vom: 04. Nov., Seite 2188-202
1. Verfasser: Gall, Juergen (VerfasserIn)
Weitere Verfasser: Yao, Angela, Razavi, Nima, Van Gool, Luc, Lempitsky, Victor
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM207206562
003 DE-627
005 20250212151039.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2011.70  |2 doi 
028 5 2 |a pubmed25n0691.xml 
035 |a (DE-627)NLM207206562 
035 |a (NLM)21464503 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gall, Juergen  |e verfasserin  |4 aut 
245 1 0 |a Hough forests for object detection, tracking, and action recognition 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.02.2012 
500 |a Date Revised 01.12.2011 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Abstract—The paper introduces Hough forests, which are random forests adapted to perform a generalized Hough transform in an efficient way. Compared to previous Hough-based systems such as implicit shape models, Hough forests improve the performance of the generalized Hough transform for object detection on a categorical level. At the same time, their flexibility permits extensions of the Hough transform to new domains such as object tracking and action recognition. Hough forests can be regarded as task-adapted codebooks of local appearance that allow fast supervised training and fast matching at test time. They achieve high detection accuracy since the entries of such codebooks are optimized to cast Hough votes with small variance and since their efficiency permits dense sampling of local image patches or video cuboids during detection. The efficacy of Hough forests for a set of computer vision tasks is validated through experiments on a large set of publicly available benchmark data sets and comparisons with the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Yao, Angela  |e verfasserin  |4 aut 
700 1 |a Razavi, Nima  |e verfasserin  |4 aut 
700 1 |a Van Gool, Luc  |e verfasserin  |4 aut 
700 1 |a Lempitsky, Victor  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 33(2011), 11 vom: 04. Nov., Seite 2188-202  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:11  |g day:04  |g month:11  |g pages:2188-202 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2011.70  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 11  |b 04  |c 11  |h 2188-202