Electronic and chelation effects on the unusual C2-methylation of N-(para-substituted)phenylaziridines with lithium organocuprates

Copyright © 2011 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 32(2011), 9 vom: 15. Juli, Seite 1859-68
1. Verfasser: Kim, Jongtaek (VerfasserIn)
Weitere Verfasser: Yoo, Eunjung, Chang, Sukbok, Lee, Yoon Sup
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Aziridines Chelating Agents Organometallic Compounds Lithium 9FN79X2M3F
Beschreibung
Zusammenfassung:Copyright © 2011 Wiley Periodicals, Inc.
Density functional theory calculations with the B3LYP functional were performed for the title ring-opening reaction to understand the intrinsic activating and directing effects of the N-substituents, as well as the electron donating effect of the para-substituted (Y = Cl, H, Me) phenyl group at the more hindered benzylic C2 atom. The N-tosyl group (i.e., N-Tos) or the N-(2-pyridyl)sulfonyl group (i.e., N-Py) was introduced to activate the ring nitrogen atom (N1) and the para-substituted (Y = Cl, H, Me) phenyl group for the activation of the C2 atom. Conformational searches and geometry optimizations were performed for the N-(para-substituted)phenylaziridines (1∼6). Calculations indicate that the aziridine 6 (i.e., Py/Me) has the most elongated C2-N1 bond intrinsically due to the electronic activating effects, implying the aziridine 6 to be the most potent candidate for the more-hindered C2 opening. Transition states (TSs) were investigated for the prospective ring-opening paths (I∼IV), considering the types of intermolecular push-pull interactions between the N-activated phenylaziridines and the cuprate. The N-Py group provides an unique C2-favored TS along the path IV, which the N-Tos group cannot afford, due to the less charge transfer from the nucleophilic CH 3δ- of the cuprate into the electrophilic C2 atom. Furthermore, the e-donating effect of the para-substituents (Y = Cl, H, Me) enhances the C2 opening for the path IV. This study enables us to understand the unusual ring-opening phenomena in terms of electronic and directing effects and hence may serve as a tool to design substrates for highly regioselective ring openings
Beschreibung:Date Completed 24.08.2011
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.21768